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A CNDO/2 SCF perturbation theory is presented for interpreting the form of 
CNDO/2 potential energy surfaces of Unimolecular reactions. The analysis is 
performed by calculating the energy change AE arising from a distortion of the 
molecular geometry along the reaction coordinate. AE is decomposed into 
different perturbational contributions which are appropriate for an interpre- 
tation of the perturbation energy A E. Moreover, AEis resolved into energy parts 
arising from a single occupied orbital and contributions due to pairwise orbital 
interactions. In this way one evaluates numerically how the form of the occupied 
and unoccupied orbitals determines the magnitude of AE. If the distortion 
occurs along a definite symmetry coordinate, group-theoretical arguments can 
be applied to discuss the magnitude of characteristic components of the 
perturbation energy. The SCF perturbation theory is used to analyze the 
isomerization of ethylene, cis-2-butene and eis-2-butenenitrile. 
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1. Introduction 

Many qualitative approaches describing chemical reactivity are based on per- 
turbation theory [1, 2]. Bader [3] devised a perturbational method to determine the 
symmetry (or normal) coordinate along which a unimolecular reaction proceeds 
preferentially. This procedure has been reformulated and extensively applied by 
Pearson [4]. Bader and Pearson assume that the symmetry of the transition density 
between ground state and low-lying excited electronic states determines the 
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symmetry of the reaction coordinate [5]. This assumption was also applied by 
Salem and Wright in an analysis on the pyrolysis of cyclobutane and cyclohexene 
using a semi-localized molecular orbital method [6]. Gerratt and Mills proposed a 
perturbational formalism in the Hartree--Fock scheme for the direct calculation of 
force constants [7]. A semi-empirical SCF perturbation theory has been developed 
by Vahrenholt for calculating the energy change arising when the molecular 
geometry is distorted [8]. This procedure has also been applied to analyze reaction 
paths with respect to characteristic energy contributions [8]. 

The main advantage of the various perturbational approaches is the possibility of 
discussing chemical reactivity in terms of properties characteristic for the isolated 
molecules. Such properties are the nodal form of the frontier orbitals, the net 
charges on atoms and the magnitude of the LCAO coefficients of interacting 
molecular orbitals [2]. However, a chemical reaction can be interpreted geometri- 
cally as the motion of an image point on the energy hypersurface of the reacting 
molecules. Generally, when qualitative molecular orbital models are used it is 
difficult to visualize a relationship between the aforementioned properties of the 
molecules and the actual form of the energy surface. Therefore, a perturbational 
approach is desirable for analyzing a potential energy surface quantitatively. 

For this purpose a SCF perturbation theory is proposed for the analysis of CNDO/2 
potential energy surfaces of unimolecular reactions. In Sect. 2 the formalism of the 
perturbation method is developed and the magnitude of important energy 
contributions is estimated by applying group-theoretical arguments. Numerical 
examples are given in Sect. 3 where the symmetric and asymmetric stretching 
motions of cis-2-butene are analyzed. In addition, the isomerization of cis-l,2- 
dideuteroethylene, cis-2-butene and cis-2-butenenitrile to their trans forms is 
discussed. The CNDO/2 approximation [9] is used throughout the work. 

2. Intramolecular SCF Perturbation Theory 

2.1. Solution o f  the Perturbation Equations 

Consider a unimolecular decomposition or rearrangement reaction of a molecule 
starting from an arbitrary nuclear configuration X ~ belonging to a definite point 
group. The reaction may proceed along a symmetry coordinate St transforming as 
an irreducible representation of the point group at X ~ For the definite nuclear 
configuration X ~ the eigenvalue problem, given by 

F o c  ~ = C~ ~ (1) 

is assumed to be known. Eq. 1 represents the solved unperturbed eigenvalue 
problem in the CNDO/2 approximation, F ~ is the Hartree-Fock operator, C o is a 
rectangular matrix containing the eigenvectors for the occupied molecular orbitals, 
and s ~ is the diagonal matrix of the corresponding one-electron energies. The 
eigenvalue problem (1) is equivalent to the commutator relation [10, 11] 

FoR o _ R ~176 = 0. (2) 
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The unperturbed one-electron density matrix R ~ is a sum of projection operators 
C~176 and related to the bond order matrix pO by j v j  

oct 

R ~  = Z C ~ 1 7 6  = �89 (3) 
J 

Now, the nuclear configuration X ~ may be changed along Si. The geometry of the 
distorted molecule is designated as Xi = X ~ + A S~. We are interested in the solution 
of the commutator relation 

F R - R F = O  (4) 

at the nuclear configuration X~. Proceeding along the usual lines of perturbation 
theory, Eq. (4) is expanded into a power series of an ordering parameter 2 

(F ~  I + . . . ) ( R  ~  1 + . . . )  
-(R ~ 1+- -  .)(F ~ 1 + .  . . )=0 .  (5) 

The first order correction R 1 of the density matrix is determined by the first order 
perturbation equation 

F ~  1 + F 1R ~ - R ~  1 - R 1 F  ~ = 0. (6) 

The matrix elements of the perturbed F 1 matrix are derived by expanding the 
CNDO/2 matrix elements [9] into a power series of 2 and by collecting all factors of 
21 . The diagonal elements are given by 

F 1  D 1  .o l n l  .o 
,a# ---- "~ AA YAA - -  2 r  ~#YAA 

+ Z }2 1 o .  PBB~AB (7) 
B ~ A  B ~ A  

The off-diagonal elements may be divided into two sets" the atomic orbitals/~ and v 
are centred on the same atom A 

F~v I t , 1  0 
.~_ - -  )-/~#v~)AA, 

or/~ belongs to atom A and v to atom B 

FI R1 l n l  ,0 1 D O  1 
# v  ~ H # v  - -  ~.-/"/zv,CAB - -  2~#v~YAB . 

(8a) 

(8b) 

Generally, several ways of defining the fl~ and 7~B matrix elements are appropriate. 
In the method proposed here these matrix elements are calculated numerically 

/?ut~ = fl,v(X ~ + A S~) - fluv(X ~ (9) 

and an equivalent formula holds for the 7~B-matrix elements. In this way the flut~ and 
7~B are defined as corrections leading to the exact/3,~ and YAB matrix elements; 
higher order corrections do not exist. Second and higher order corrections to the F 
matrix arise from the higher order corrections to the P matrix. Thus, the 
perturbational formalism is related to the coupled Hartree-Fock method [ 13]. The 
same definition for the first order corrections has been used by O'Shea and Santry 
for the calculation of molecular geometries using SCF perturbation theory [12]. 
However, our definition of the perturbation deviates from the first order corrections 
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applied in the SCF perturbation theory of  Vahrenholt, where a Taylor series of the 
matrix elements is used [8]. 

The first order correction R 1 of the density matrix is determined from Eq. (6) using 
the projection operator method, as outlined in [10, 11]. Only the final result is given 
here. The matrix R 1 is completely determined by the off-diagonal projected 
components 

R 1 o 1 o 0 1 o = R  R R . + R u R  R .  (10) 

The matrix R ~ is the sum of projection operators defined in the subspace of the 
unoccupied molecular orbitals 

unocc 

R ~  ~ C ~ 1 7 6 1 7 6  (11) 
k 

The off-diagonal projected component is derived by the perturbational expression 
1-10, 11] 

occ unocc W ' ~ O ~ O t  ig;,1 w~Ow, OT 

o 1 0 ~ (12) R R R u = 2  ""J ' ' ' j  .t "~k '~k o ~o 
j k ~ j - -  

Since the F 1 matrix elements contain the R ~ elements via Eqs. (7) and (8), Eq. (12) is 
solved iteratively. 

2.2. The Perturbation Energies 

The total SCF energy of the molecule at point X ~ on the potential energy surface is 
calculated from the expression [10, 11] 

E ~ =�89 Tr P~176 +F~ (13) 

We are interested in the SCF energy at the point X~ 

E =  �89 Tr P(H + F) = E ~ + AE= E ~ + 21E 1 + 22E 2 + 23E 3 + �9 �9 .. (14) 

Using the same procedure as outlined in [11], the final expression for the first order 
energy correction E 1 is derived 

E l = E 2  [ 2 2 A  V " P ~  R 1 Z...a ~ # v r ' / ~ v  
A < B  p V 

1 F A y  ? o o l 2 u ~ Pu'Pu'YAB+(P~176 

The first term of Eq. (15) is designated as Er~ s and can be reformulated as follows 

E~s= Z 2 2 ZA Z" P~ 
A < B  .u v 

occ 

= T r  P~ =2  ~ C~ ~ (16) 
J 
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Eq. (16) shows that E~les is a sum of expectation values of the unperturbed molecular 
orbitals C o over H 1 containing the first order resonance integrals/31~. Since the 
matrix pO represents the unrelaxed charge distribution, E)e~ can be interpreted as a 
change in the binding resonance energy measuring the capability of pO to retain the 
molecule in the undistorted geometry X ~ The total first order energy E ~ is a sum of 
two-centre terms resembling the form of the diatomic EAB contributions. The latter 
are derived by partitioning the total CNDO/2 energy expression into mono- and 
diatomic parts [14]. From this analysis the resonance contributions are seen to 
correlate closely with the total EAB values. Therefore, one may conclude that E~s 
represents an important contribution to the total E*. Considering the form of H,v in 
the CNDO/2 approximation a positive E2~ is to be expected if the interatomic 
distances RAI 3 in the distorted configuration are larger than the R~ This conclusion 
is confirmed by the numerical applications discussed later. 

The second term in (15) arises from a change in the exchange interaction between the 
centres A and B; in the following examples this term is designated as E~x and appears 
to be smaller than E~es. The third contribution of (15) arises from the electrostatic 
interaction between the centres since (P~ describes the unperturbed net 
charge at atom A; these electrostatic terms are denoted as E~. For this formulation 
of E~ the term ZAZB]J1B has been added. The last part of Eq. (15) will be called the 
nuclear distortion term ENiD 

/ '1  1 o'~ 
(17) 

In this contribution the change of the nuclear repulsion is contained. In addition 
ZAZB;~R used in E 1 has been subtracted. 

The significance of E 1 may be compared with the first order energies in the 
perturbation theories of Geratt and Mills [7] and Vahrenholt [-8]. These theories 
are based on Taylor expansions of operators [7, 8]. Consequently, the first order 
energies represent the first derivative of the energy with respect to a distortion of the 
molecular geometry. If the latter corresponds to the equilibrium geometry, E* 
should vanish. However, a different result is expected for the model proposed here. 
Due to the definition of/3,1, and 7A1B (see Sect. 2.1), E 1 is non-zero, even when the 
molecule is distorted from the equilibrium geometry. This conclusion is verified by 
the numerical examples of the following sections. 

Using the same general procedure as for E ~, the following formula for the second 
order energy E 2 is derived 

{ ~  - -Bp,  ~ 1 -  0 1 1  
A < B  v - -  / t  v 

, } + 5  [ PAA(* PBB0 -- ZB) + PBB(* PAA0 _ _  ZA)] ]JAB1 . (18) 

The first term of (18) designated as Er2s is reformulated showing the role of the 
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interacting molecular orbitals 
or utloc.~ 

2 1 1 1 f a l  t"~Ot ~ l l p O  A- --1 P O t  ~Arl Eres=~TrP Y = ~  Z w U k j r  j 1 1  C ~  (19) 
j k 

The as�89 are the first order LCMO (linear combination of molecular orbitals) 
coefficients [ 11] which provide a measure for the interaction between the occupied 
and unoccupied molecular orbitals when the molecule is distorted. Eq. (19) 
indicates that ErZ~s describes the distortion of the molecule in the relaxed charge 
distribution represented by P ~ ; this relaxation occurs via the mixing of the occupied 
and unoccupied molecular orbitals. Therefore, Er2~ is expected to be an energy 
decreasing contribution to the total AE. The interaction coefficients a~k of Eq. (19) 
are determined by the following first order expression 

C~176 (20) 
aJ k -~ 0 0 

~j  - -  ~k 

Since the range of the indices j and k include the frontier orbitals HOMO and 
LUMO, the E2~ contribution is related to the frontier orbital concept representing a 
successful qualitative approach to chemical reactivity [1]. Moreover, Er2s resembles 
the characteristic second order energy decreasing term employed in the Bader- 
Pearson procedure [3, 4]. This perturbational approach for chemicalreactivity uses 
many-electron functions for describing ground and excited states [15]. The 
reformulation of the energy decreasing contribution in terms of molecular orbitals 
[15] establishes a close relationship to E2s derived in the perturbational approach 
proposed here. 

By analogy to E 1, the second term of Eq. (18) arises from second order changes in 
the exchange interaction between the centres A and B; this contribution is denoted 
as E~x. The third term describes the energy due to the polarization of the charge of 
atom A in the field of the unperturbed net charges (P~ B -ZB); this contribution is 
designated as Ep2ol . However, in the numerical applications E~ and Ep2ol turn out to 
be rather small. 

The third order energy correction E 3 is evaluated by the expression 

[ - 1  1 1 1 B x i I] 
l 

1 0 1 1 0 1 1 0 1 1 0 1 T r R  P P R F + ~ T r R . P  P R~F . (21) 

Notice that P~ determines the energies up to third order. This result is a special case 
of a well-known theorem in perturbation theory [16]. 

2.3. The Symmetry of Distortion and the Role of Molecular Orbitals 

In this section symmetry arguments are applied to discuss the magnitude of E~es and 
E~s contained in 2:E when the molecule is distorted along a definite symmetry 
coordinate St. The analysis is performed for point groups with only one- 
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dimensional irreducible representations. Furthermore we assume that a distortion 
of the molecule from configuration X ~ to X~ A& induces an energy increase. 

Referring to the analysis outlined in Sect. 2.2, E~es is an energy raising contribution, 
whereas ErZs is an energy decreasing component of AE. 

In the model applied here only small distortions along Si are considered. H 1 is 
defined as the difference between the distorted and undistorted core-Hamilton 
operator (see Eq. (9)). Consequently, H 1 transforms as the totally symmetric 
representation of the point group of the distorted molecule. However, the 
expressions for E~ and ErZs contain the unperturbed molecular orbitals transform- 
ing according to the point group of the undistorted molecule (see Eqs. (16) and (19)). 
Since the main purpose of the analysis is to discuss the magnitude of AE in terms of 
properties of the undistorted molecule, we investigate the transformation properties 
of H 1 in the point group of the undistorted molecule. 

The symmetry properties o f H  ~ become apparent when this matrix is expanded into 
a Taylor series 

1 / ' O H \ ~  1 ~2 H o 2 
+g~.~-i ) AS~ + . . .  (22) 

The matrix representation H at the point j(0 transforms as the totally symmetric 
representation of the point group at X ~ Consequently, the contributions with odd 
orders in A & of(22) transform as the distortion Si. However, the even order terms in 
AS~ transform as the totally symmetric representation. Since only small distortions 
along S~ are considered, H* may be approximated by the first term, linear in AS~ of 
Eq. (22). Therefore, H* transforms predominantly as the symmetry coordinate S~ 
along which the distortion occurs. 

Now we apply group-theoretical arguments to Eq. (16) for Eles. Substituting the 
expansion (22) into Eq. (16), the expectation values over the first term and all odd 
order terms of (22) are zero, unless the direct product Fc7 x Fs~ • Fco contains the 
totally symmetric representation. This direct product has to be considered for all 
occupied molecular orbitals C ~ If the nuclear configuration at point X ~ cor- 
responds to a point group with one-dimensional irreducible representations a large 
E~s value is expected {'or a distortion along a totally symmetric coordinate S,, since 
the first order term of (22) contributes. However, a small E~ is predicted for a 
distortion transforming not according to the totally symmetric representation, since 
the expectation values over the first order term in (22) vanish. 

A similar symmetry analysis can be performed for the magnitude of E~s. Using the 
same procedure as outlined above for H ~, the F ~ matrix transforms approximately 
as the distortion. Therefore the a]k-coefficients contained in E;2s (see Eq. (19)) and 
evaluated by Eq. (20) will be small, unless the direct product Fco x Fs~ • Fc: contains 
the totally symmetric representation. Consequently, a large contribution of the two 
interacting orbitals j and k is expected, when the direct product Fc o x Fce contains 
the irreducible representation of &. 
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I f j  and k refer to the HOMO and LUMO, respectively, this symmetry condition 
resembles the Bader-Pearson concept where the symmetry of the preferred 
distortion is identical with the symmetry of the transition density between the 
ground and the first excited state I-3]. 

Using the symmetry analysis and the assumption of a positive AE  we are now in a 
position to formulate rules concerning the magnitudes of E,l~s and E~s: 

a) A small positive E~s is favoured by a symmetry coordinate S~ not transforming 
according to the totally symmetric representation; for a totally symmetric 
distortion a large positive E~ can be expected. Since E~ describes a geometry 
distortion in the unrelaxed charge density p0 (see Sect. 2.2), a totally symmetric 
change of the nuclear geometry is not supported by the symmetry of the 
unrelaxed charge distribution pO. 

b) The negative energy contribution E~ arising from the relaxation of the charge 
density is large if unoccupied molecular orbitals with low eigenvalues e ~ are 
available. This condition implies small eigenvalue difl?rences e ~ - e  ~ in Eq. (20) 
determining the a~k LCMO coefficients. As an additionalrequirement the totally 
symmetric representation has to be contained in the direct product Fc? x Fs~ 
x Fc~. 

The proposed perturbational approach can be used to relate the form of the 
unperturbed molecular orbitals and the magnitude of their contribution to E~ and 
E~s. This analysis is performed by calculating AE~p ~, the contribution of one single 
occupied molecular orbital C ~ 

r e s  = AEj  + AE j  = AEj  1 2 2COH1C o 

unocc 

L~*~'-'k "~ "~ + ak) C) n C~ ]. (23) 
k 

Formula (23) is derived by resolving E)e s and E~e s into energy parts pertaining to the 
unperturbed molecular orbital C ~ . The first term arises from the distortion of the 
nuclear framework in the unperturbed charge distribution due to C ~ . The second 
term of Eq. (23) originates from allowing the molecular orbital C ~ to adjust to the 
distorted molecular geometry. Inspection of the sign and the magnitude of the AEj *s 
values leads to a classification into energy raising or lowering orbitals. In this way a 
relationship between the nodal properties of the one-electron orbitals and the form 
of the potential surface can be established quantitatively in the CNDO/2 tbrmalism. 

3. Numerical Applications 

3.1. Test o f  the Symmetry  Analysis 

In this section the proposed perturbation theory is applied to the distortion of cis-2- 
butene along different symmetry coordinates. In this way the relationship between 
the numerical magnitude of the different perturbation terms and the symmetry of 
distortion is demonstrated. 
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The equilibrium geometry of cis-2-butene was chosen as the undistorted nuclear 
configuration X ~ This geometry has been determined by minimizing the total 
CNDO/2 energy with respect to all carbon-carbon bond lengths and the length of 
the C-H bond adjacent to the double bond (rcl-c2 = 1.46 A, rc2~:3 = 1.33 A, rc2-H 
=l.12A_). In addition the Ct-CE-Ca and the C 2 - C 3 - H  bond angles were 
optimized (128.4 ~ and 117.5 ~ respectively). The geometry of the methyl group was 
fixed at rc_ H = 1.11 A and tetrahedral angles were assumed. 

Starting from the nuclear configuration X ~ cis-2-butene was distorted along both 
C-C single bonds in the direction of a symmetry coordinate belonging to A 1 in C2v 

H H H H 
\ / \ / 
/c=c\ / c = c \  

H s C  C H  3 H 3 C  C H  3 

and alternatively along another coordinate transforming as B2 in C2v 

H H H H 
\ / \ / /c=c\ , /c=c% 

HsC C H 3  H 3 C  C H  3 

The perturbation energy AE tbr the totally symmetric distortion by 0.1 A and the de- 
composition into the different perturbational conditions are recorded in Table 1. 
The numerical value of AE (20.9 kcal/mol) calculated to third order agrees almost 
completely with the AE value of 20.8 kcal/mol derived from the CNDO/2 
calculations for the distorted and undistorted geometry. This finding shows the 
good convergence of the perturbation method; a similar convergence has been 
found in all numerical examples. 

The decomposition of AE is used to determine the important AE raising and AE 

Table 1. Decomposit ion of  the perturbation 
energies AE (kcal/mol) into different energy 
contributions when cis-2-butene is distorted by 
0.1 A along the A1 and B 2 symmetry 
coordinates 

A ~ B2 

1st order :E~  128.468 5.121 
E~x 12.616 - 0 . 4 0 2  
Edl 0.000 0.000 
E~D -- 114.934 24.572 

E 1 26.150 29.291 

2nd order: E~e ~ - 4.997 - 5.498 
Ee2x -0 .273  -0 .277  
Ep2ol 0.000 0.000 

E 2 - 5.270 -- 5.775 

3rd order: 
E a - 0 . 026  -0 .006  

A E = E I + E Z + E  3 20.854 23.510 
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decreasing contributions when cis-2-butene is distorted. In accord with the 
symmetry considerations a large and positive E~e s (128.5 kcal/mol) is calculated for 
the A 1 distortion. In addition, an energy raising Ee~ (12.6 kcal/mol) is evaluated. 
These contributions are almost compensated by the energy decreasing nuclear 
distortion term E~D (-- 114.9 kcal/mol) and to a smaller extent by all other energy 
components. The absolute value of Er2s is smaller than E), s by one order of 
magnitude. Using the interpretation for E~I~ and Er2s (see Sect. 2.2) this finding 
shows that the unfavourable movement of the nuclei in the undistorted charge 
distribution po is not facilitated by the relaxation of po. 

A different result is derived for a distortion along the non-totally symmetric B 2 
coordinate. The perturbation energy and its decomposition are also recorded in 
Table 1. In agreement with the symmetry analysis a much smaller E~s value is 
calculated compared to the A 1 distortion. The positive E~D predominates in E 1 and 
determines the sign of AE. The largest energy lowering contribution is E~  and 
compensates the value of E~.  

Thus, in contrast to the A a distortion the energy increase arising from the change of 
the nuclear framework in the unrelaxed charge density p0 and the energy decrease 
due to the relaxation of po are of comparable magnitude. 

3.2. The Role of  Molecular Orbitals 

A correlation between the form or the nodal properties of molecular orbitals and a 
preferred reaction coordinate is inherent in many qualitative theories of chemical 
reactivity [1, 15, 17]. The proposed perturbational method is related to these 
qualitative models and has the advantage of providing quantitative information 
concerning the role of individual molecular orbitals. This information is derived by 
calculating energy contributions arising from definite molecular orbitals. The 
procedure is illustrated by comparing the isomerization of 1,2-dideuteroethylene, 
cis-2-butene and cis-2-butenenitrile at the beginning of the reaction coordinate. 

The activation energies for the isomerization of 1,2-dideuteroethylene and cis-2- 
butene are 65.0 kcal/mol and 62.8 kcal/mol, respectively [18]. A smaller activation 
energy of 55.7 kcal/mol is observed for cis-2-butenenitrile [-18]. 

An important assumption of the applied model is that differences in the activation 
energies are reflected by differences in the AE values calculated in the region of the 
beginning reaction [19]. The calculated perturbation energies AE for rotation 
about the double bond by 10 ~ are given in Table 2. For all three molecules 
considered similar AE values are calculated. However, the decrease of the activation 
energies [18] in the series 1,2-di-deuteroethylene, cis-2-butene and cis-butenenitrile 
is reproduced by the perturbation energies AE. 

Inspection of Table 2 indicates that the total AE is almost completely determined by 
the positive E~s and the negative E~s. Now the E~es and E~2~ values are resolved into 
energy contributions A E) and A E 2 arising from definite molecular orbitals C ~ This 
decomposition is performed by application of Eq. (23). The purpose of this analysis 
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Table 2. Decomposit ion o f  the perturbation energies d E  (kcal/mol) into different energy contributions 
when ethylene, cis-2-butene and cis-2-butenenitrile are rotated about  the double bond by 10 ~ 

H2C=CH 2 HaCCH--CHCH 3 NCCH--CHCH3 

1 st o r d e r : E ~  2.8059 12.3295 16.8628 
E~x 0.0000 0.0000 0.0024 
E~ 0.0000 -0 .0003 0.0011 
E~D --0.0031 --0.0126 --0.0107 

E I 2.8028 t2.3166 16.8556 

2"a order: E ~  - 1.0121 - 10.5860 - 15.1038 
E~ 0.0000 0.0000 -0 .0001 
E~o I 0.0000 0.0000 -0 .0001 

E 2 - 1.0121 - 10.5860 - 15.1040 

3 ~d order: 
E 3 0.0000 -0 .0402  -0 .0960  

A E = E  1 + E Z + E  3 1.7907 1.6904 1.6556 

is to correlate the form of orbitals with the magnitude and the sign of their energy 
contributions to E~es and 2 E 

r e s "  

The molecular orbitals of ethylene and cis-2-butene are classified using the point 
group Car, whereas the group Cs is applied for cis-2-butenenitrile. All AE) values for 
occupied orbitals of the same irreducible representation F~ are added and given in 
Tables 3 and 4. 

The role of the occupied molecular orbitals determining E~s can be seen in Table 3. 

Table 3. Decomposit ion of  Er~e~ (kcal/mol) into contributions AEjlarising from molecular orbitals of  a 
definite irreducible representation. All A E~ values for the occupied orbitals C ~ of the same irreducible 
representation are added 

Er~s al b2 a2 bl 

H2C---CH2 2.8059 1.8392 0.9667 0.0000 0.0000 
H3CCH=CHCH3 12.3295 5.5490 2.6439 1.2636 2.8730 
H3CCH=CHCN 16.8628 10.6598 (a') 6.2030 (a") 

Table 4. Decomposit ion of E~s into contributions A E  z arising from molecular orbitals of  a definite 
irreducible representation. All A E  f values for the occupied orbitals C ~ of  the same irreducible 
representation are added 

E2~ al ba a2 bl 

H2C--CH2 -1.0121 -0 .3791 0.0 0.0 -0 .6330  
H3CCH=CHCH3 - 10.5860 -2 .7148 -2 .0853 -2 .5692  - 3.2167 
N C C H = C H C H  3 -15 .1038 -6 .8791 (a r) -8 .2247  (a") 
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In Eles of ethylene and cis-2-butene the largest contributions arise from the aa 
orbitals, whereas the a' orbitals predominate in the case of cis-2-butenenitrile. 

In the following discussion the perturbation energy AE is analyzed in detail when 
ethylene is rotated about the C=C bond. In Fig. 1 the molecular orbitals giving rise 
to the largest AE~ contributions are depicted; the percentage values compared to 
the total EI~ are also recorded. EI~ is largely determined by the orbitals 2a I and 2bz 
being a-orbitals localized in the C-H bond region. The occupied 1 b~ n-orbital does 
not contribute to the AE raising E:e ~ value. Using the interpretation of AE) (see Sect. 
2.3), the results illustrated in Fig. 1 show that the unperturbed a-orbitals 2a~ and 2/?.2 

2al 2b,-, 
1.7758 (63%) 1.0232 (36%) 

Fig. 1. The forrnofoccupiedmolecular orbitals giving rise to the largest positive single MOcontribution 
AEi 1 to E~ when ethylene is rotated about the double bond by 10 ~ The form of these orbitals hinders the 
isomerization. The AEi 1 are given in kcal/mol; the percentage values refer to the total E~s. 

tend to retain the H atoms in the undistorted geometry. The lbl n-orbital is not 
localized in the region of the moving H atoms. Consequently, the contribution to 
E:es is zero. The AE raising orbitals of Fig. 1 do not possess a nodal surface in the 
C-H bond region. This property supports the concept that the distortion of the 
nuclear framework is prevented by molecular orbitals not possessing a nodal 
surface in the region where the distortion occurs. 

The AElowering contribution E2es is analyzed in Table 4 and the decomposition into 
pairwise orbital interactions is shown in Fig. 2. The analysis indicates that the 

Ere s . A occupied lbl n-orbital and the 2al a-orbital are involved in the negative 2 
value of -0.63 kcal/mol is evaluated for the interaction between the lbl n-orbital 
with the 4b2 a*-orbital, whereas the orbital pair 2aa a and la2 re* contributes 

- 0.38 kcal/mol to E~os. A linear combination of the interacting orbitals gives rise to 
new orbitals adjusted to the distorted molecular geometry. This relaxation process 
is manifested by the negative second order contributions. The frontier orbitals 
HOMO and LUMO are involved in the energy decreasing interaction (see Fig. 2). 
However, a direct interaction does not occur. Thus, the model classifies the 
isomerization as unfavourable by the principle of interacting frontier orbitals [1]. 

According to the analysis performed the a-orbitals induce the energy increase, 
whereas the n-orbitals tend to lower the energy via the second order contribution. 
These results seem to violate the generally accepted concept that a rotation about 
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-0.6330 kcal/mot 

la 2 

-0.3791 kcal/mol 
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Fig. 2. Pairs of interacting molecular orbitals lowering the perturbation energy AE when ethylene is 
rotated about the double bond. These orbital interactions favour the isomerization 

the double bond is hindered by the decoupling of the n-bond. However, the 
perturbational method is designed to perform an analysis in terms of unperturbed 
CNDO/2 orbitals calculated in the undistorted molecular configuration. Using this 
model the rotation about the double bond is visualized as separated into two 
processes. First, the nuclear configuration is changed but the molecular orbitals 
remain undistorted; this situation is manifested by the AE increasing Er~es. In a 
second step the molecular orbitals relax towards the new geometry via a linear 
combination of unperturbed orbitals; this AE decreasing process is described by 

2 Eres. A relationship between the perturbation energy AE and the energy needed to 
break the n-bond is established by considering the molecule after the relaxation 
process. The a-orbitals are located in the planes of the methylene groups, whereas 
the n-orbital is partially decoupled; the positive total AE indicates a breaking of the 
n-bond. 

A similar pattern is derived from the analysis applied to the distortion of cis-2- 
butene and cis-butenenitrile. The largest energy raising part of E~e~ due to a single 
orbital C ~ arises from the lba and la" orbitals of cis-2-butene and cis-2- 
butenenitrile, respectively. The lbl orbital of cis-butene is a n-orbital with a large 
hyperconjugative contribution from the methyl groups. This orbital does not 
possess a nodal surface in the C-CH3 region of the moving C H  3 groups. The same 
properties characterize also the la" orbital of cis-2-butene-nitrile. 

The orbital interaction terms contained in Er2s also decrease the positive Er~e~ value 
significantly. In contrast to ethylene all groups of occupied orbitals are involved in 
E2es (see Table 4). A detailed analysis indicates that the total 2 - Er~ is determined by the 
interaction of a- and n-type orbitals, and the same general pattern as for ethylene is 
retained. 
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4. Summary and Discussion 

In the previous sections an SCF perturbation theory has been proposed for 
calculating the energy change AE arising from a small change of the molecular 
geometry. If the distortion occurs along a reaction coordinate the magnitude of A E  

is assumed to correlate with the activation energy for the unimolecular reaction. 
Similar assumptions are used in qualitative perturbational approaches for chemical 
reactivity [1, 19]. The proposed SCF perturbation theory is characterized by the 
following properties: 

a) The numerical energy values of the CNDO/2 potential energy surface are closely 
approximated using the perturbational approach. This result is confirmed by the 
numerical examples of the preceding section and agrees with the convergence 
behaviour found by O'Shca and Santry [12, 20]. 

b) The decomposition of the perturbation energy leads to energy contributions 
arising from the distortion of the nuclear framework in the unrelaxed and 
relaxed electron distribution. If the distortion occurs along a symmetry 
coordinate, a group-theoretical analysis can be applied to estimate the 
magnitude of these energy components. 

c) In addition, the proposed SCF perturbation theory can be used to relate the 
form of the unperturbed molecular orbitals with their contributions to the 
perturbation energy AE.  This analysis is performed by calculating energy 
contributions of the perturbation energy arising from definite molecular 
orbitals. The signs of these energy contributions classify the unperturbed 
molecular orbitals as raising or lowering the perturbation energy. 

In this way the SCF perturbation theory combines a quantitative analysis of the 
potential energy surface with the conceptual advantages of the qualitative 
perturbational approaches to discuss chemical reactivity in terms of nodal 
properties of the unperturbed molecular orbitals [1]. 

A different type of qualitative approach towards chemical reactivity is based on 
correlation diagrams [21]. Recently Halevi proposed a correlation diagram 
technique where the molecular orbitals are classified according to the largest point 
group common to reactants and final products [22, 23, 24]. A reaction is allowed 
when all occupied orbitals of the reactants and the final products are in pairwise 
correspondence. This condition is defined as containing the totally symmetric 
representation in the direct products Fr x F d x Fp, where F,, Fd and Fp denote 
respectively, irreducible representations of a reactant orbital, molecular distortion, 
and final product orbital. Using this direct product the symmetry F d of the preferred 
distortion is determined by the symmetry properties of the reactant and product 
orbitals. 

The purpose of the following analysis is to illustrate a relationship between the 
proposed SCF perturbation method and Halevi's correspondence diagram tech- 
nique [22]. Consider a definite pair of corresponding initial and final orbitals. The 
correspondence lines connect an initial orbital and an orbital of the final product 
passing continuously into each other when MO calculations are performed on 
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different points o f  the reaction coordinate.  Using the C N D O / 2  method the 
difference between eigenvalues of  two corresponding orbitals is given by the 
following formula  

Aei = e.f - ~o _ C~ F -  F ~  C ~  ' C f  
c O t c  f - c O t c  f (24) 

This expression is deduced f rom the eigenvalue problems of  the reactant  and final 
product  and resembles the integral H e l l m a n n - F e y n m a n  theorem [25, 26]. I f  C ot Cy 
is approximated by C~ 1, an approximate  formula  for A~i is derived 

A~i ,~ C~ F' C y. (25) 

The relation o f  the A~ and the total SCF per turbat ion energy A E  is given by the 
following expression 

o c e  o c c  

A E =  E ( C ~ H C , -  C m H ~  ~ + E A t , ,  (26) 
i i 

deduced f rom Eqs. (13) and (14). 

Assuming that  the matrix elements of  F '  in (25) t ransform as the irreducible 
representation Fd of  the distort ion along the reaction coordinate,  the cor- 
respondence principle o f  Halevi [22] can be applied to A~i. An eigenvalue change 
A e~ is expected when the direct product  Fco x/ 'd  •  contains the totally symmetric 
representation. This analysis shows that  the correspondence principle applied in a 
correlat ion diagram technique [22] also determines the eigenvalue changes AE~ 
contained in the total SCF per turbat ion energy AE. 
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